
2021년도 1학기 응용전산및실습 I

교과목명: 응용전산 및 실습 I

담당교수:이수형

E-mail: soohyong@uu.ac.kr

교재명:유인물

수업 계획

- 교과목: 응용전산 및 실습
- 담당교수 : 이 수 형 (010-2521-3227), <u>soohyong@uu.ac.kr</u>
- 수업개요
 - MATLAB은 전기, 전자 외 다양한 공학 분야에서 사용되는 소프트웨어로 범용성이 높고 사용하기 편리하여 많은 분야에서 각광받고 있으며 그 정확성 또한 널리 검증되어있는 상태이다. 기본적인 수치해석 문제를 손쉽게 해결할 수 있고 고차원의 수학적 문제 또한 MATLAB을 사용하여 간단히 해를 구할 수 있다. 이와 같이 유용한 수학적 도구를 사용 하여 복잡한 수치해석 문제와 전기해석에 관련된 문제를 학생들이 쉽게 해결할 수 있는 능력을 함양하는 데에 본 교과목은 목표를 두고 있다.

• 수업 목표

- MATLAB의 기본적인 사용법을 숙지한다.
- MATLAB의 기본 연산인 행렬 연산을 익힌다.
- MATLAB을 활용하여 그래프 작성하는 방법을 익힌다.
- 스크립트 파일의 작성법과 프로그램을 작성하는 방법을 익힌다.

- Matlab이란 무엇인가?
 - Matlab은 Matworks사의 테크니컬 컴퓨팅 언어로서, 공학계열에서 가장 많이 사용되는 계산용 언어이다. [https://kr.mathworks.com/]
 - MATLAB = MATrix + LABoratory : Mat이라는 용어가 Matrix에서 나왔으며 기본적 인 계산방법이 행렬연산을 손쉽게 할 수 있게 한 일종의 계산용 언어이다.
 - 행렬연산을 이용하는 다양한 알고리즘들을 내장하고 있으므로 1줄로 간단하게 계산할수 있다. (Matlab을 사용하지 않고 이러한 알고리즘을 C/C++, FORTRAN 등의 언어로 구현하려면 많은 노력이 필요하다.)
 - M-file이라는 형태로 일반적인 프로그래밍 언어로서의 사용이 가능하다. 즉, C/C++과 같이 프로그램을 작성하여 저장한 것을 불러서 수행할 수 있다.
 - 프로그래밍 언어로서 윈도우 환경에서 그래프, 버튼, 메뉴 등의 GUI(Graphics User Interface) 프로그램을 작성하는 것이 가능하다.
 - 다양한 툴박스(toolbox)들을 통해서 다양한 분야에서의 응용이 가능하다.
 - ▶ 신호처리, 통계학, 영상처리, 제어, 재정, 화학 등
 - 심볼로 이루어진 수식을 계산하는 기호 계산이 가능하다.

- Matlab의 장점
 - -설치가 쉽다.
 - 사용하는 방법이 쉽다. 프로그래밍 언어로서의 문법도 쉬운 편이어서 처음 접하는 사람들도 쉽게 접할 수 있다.
 - 인터프리터 방식이므로 명령어 또는 계산식을 한 줄 입력하면 바로 결과를 확인 할 수 있기 때문에 사용이 쉽다.
 - 다양한 그래프를 지원하므로 계산 결과를 시각화할 수 있는 기능이 우수하다.
 - CMEX라는 이름으로 C로 작성된 함수들을 불러와서 사용할 수 있다.
 - Matlab으로 작성된 것을 C언어로 변환하는 것이 가능하다. 단, 추가적인 라이브 러리 등이 필요하기도 하며 Matlab 버전 및 컴파일러 버전에 따라 내용이 달라 지기도 하므로 주의해야 한다.

• Matlab의 단점

- 인터프리터 방식을 사용하므로 계산식 또는 프로그램을 읽으면서 해석한 다음 실행하기 때문에 C/C++과 같은 컴파일하는 언어에 비해서 느리다.
 - ▶ 최근 버전에서는 병렬처리 및 해석/컴파일 후 실행하기 때문에 처음 해석할 때를 제외하고는 실행 성능이 많이 향상되었다.
- 상업용 소프트웨어이며 기업용은 매우 비싸다. 기본 패키지도 싼 편은 아니지만 각각의 툴박스들이 따로 구매하도록 하기 때문에 가격이 비싼 편이다.
 - ▶ 상업용은 기본 패키지가 260만원이며 필요한 툴박스들은 별도 구매이다.
 - ▶ 교육용은 기본적으로 사용하는 툴박스가 몇가지 포함되어 \$55로 판매되고 있다.
- 다른 프로그래밍 언어에 비해서 사용법이 쉽지만, 최근에 많이 사용되는 프로그래밍 언어로서의 방식에 비하면 기초적이다.

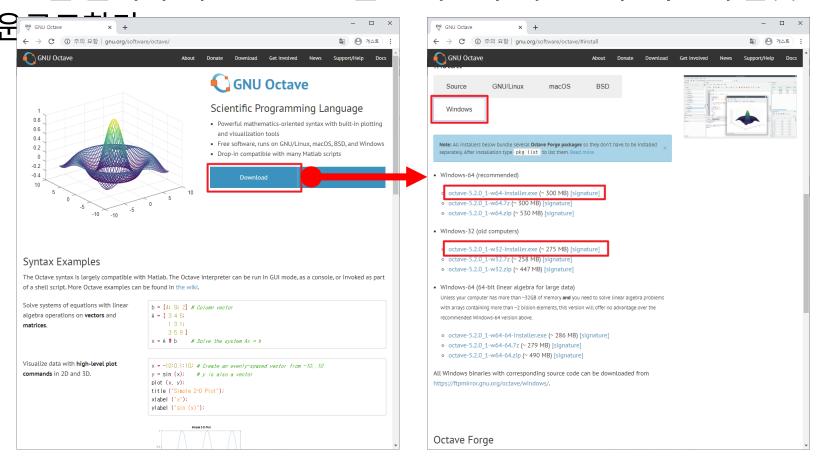
• Matlab 의 대안

- Matlab이 공학용 계산 소프트웨어로 고가의 소프트웨어이므로 Matlab의 대안이 될수 있는 비슷한 기능을 하는 다양한 무료 소프트웨어가 존재한다.
- Matlab을 사용함으로서 사용하고자 하는 여러가지 기능들을 라이브러리 형태로 Python 등의 프로그래밍 언어로서 쉽게 사용할 수 있도록 만들어놓은 형태가 있고, Matlab처럼 별도의 소프트웨어로서 Matlab과 비슷하게 사용해놓은 S/W도 존재한다.
- 프로그래밍 언어 (무료)
 - ➤ Python 라이브러리 (SymPy, Numpy) : 파이썬 프로그래밍 언어를 위한 수학, 과학, 공학용 계산 라이브러리 (아주 많은 기능을 제공한다.)
 - ➤ Julia 프로그래밍 언어: Matlab과 비슷하게 행렬연산 및 다양한 과학/공학용 계산을 위한 프로그램 언어이며 속도 또한 매우 빠르다. 단, 아직 초기 개발 버전이다.
- 무료 소프트웨어 패키지
 - ➤ Scilab, Octave: 둘 다 Matlab과 유시하게 사용할 수 있다. 벡터/행렬 연산을 기본으로 제공하며 Matlab과 유사하게 사용할 수 있다. 다만 Scilab 보다 Octave가 Matlab과 거의 동일한 명령어 및 계산식을 사용하므로 Octave가 여러가지 대안 중에서 가장 호환성이 뛰어나므로 대부분의 경우 동일하게 사용할 수 있다.

Octave 시작

Octave

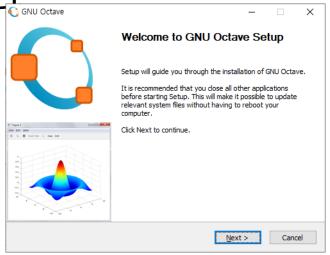
- GNU재단에서 만든 수치해석용 소프트웨어로 누구나 무료로 사용이 가능하다.
- 기본적으로 Matlab과 동일한 문법을 사용하므로 한 S/W에 익숙하면 다른 곳에 적용이 아주 쉽다.
- Gnuplot 등의 그래프 툴과 연계해서 표, 그래프, 차트 등을 만들 수 있으며 Matlab과 동일한 명령어로 같은 내용의 그래프 등을 만들 수 있다. (다만, 그래프의 자세한 설정 방법은 Matlab과 다소 차이가 난다.)
- Matlab이 사용 소프트웨어로 최적화 등에 많은 투자를 하기 때문에, Octave의 수행 속 도는 Matlab에 비해서 느리다.

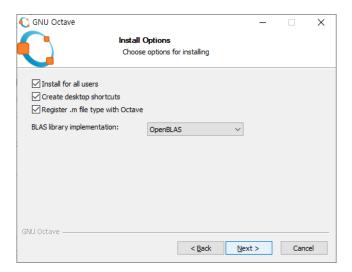

• Octave 사용 이유

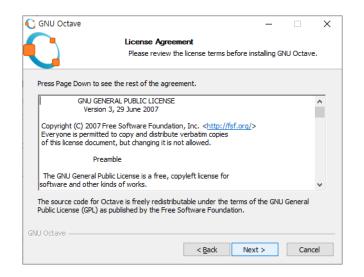
- 상용 소프트웨어이므로 구매해서 설치해 놓은 학교의 실험실에서는 사용이 가능하나,
 예습/복습 등의 이유로 집에서는 따로 구매해서 사용하여야 한다.
- 따라서 수강하는 학생들이 별도로 실습을 하기 위해서 사용할 수 있으므로 Octave를 설치하여 사용한다. (추후 실습 시간에 Matlab과 Octave를 비교하면서 실습할 예정)

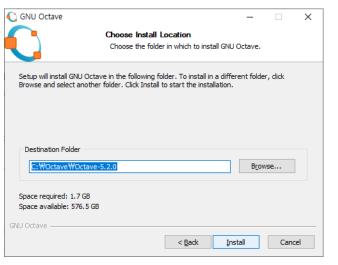
Octave 설치

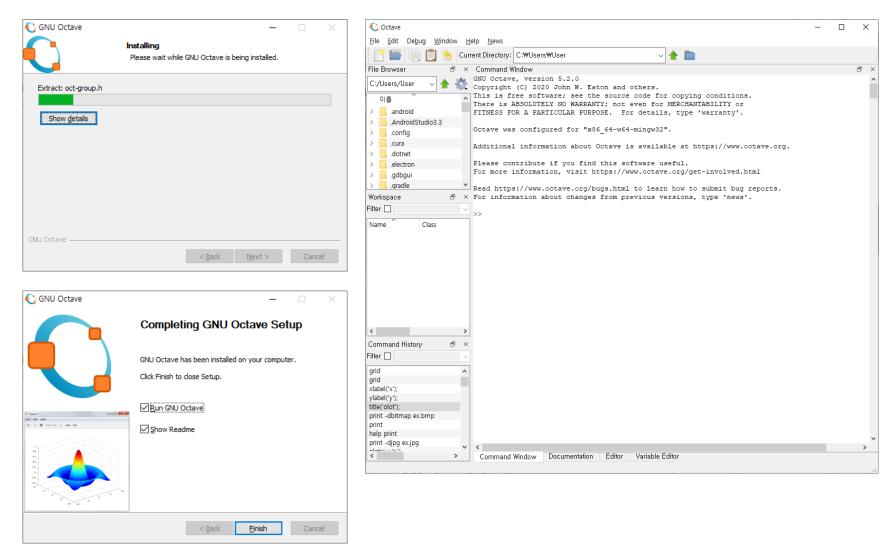
- Octave 설치 방법
 - 홈페이지 [http://www.gnu.org/software/octave/]에 접속한다.

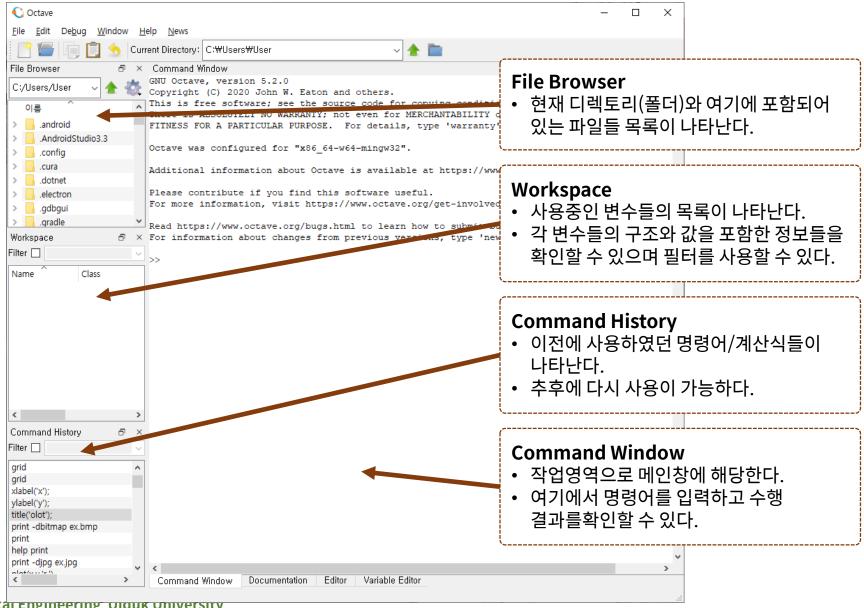

- 다운로드를 클릭하고, Windows를 선택한 후에 윈도우 버전에 알맞은 설치파일




Octave 설치

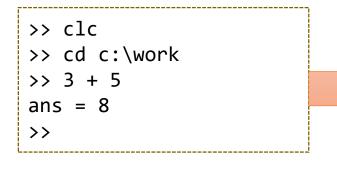

• 설치 파일을 수행한 후에 기본으로 선택되어진대로 [Next]를 눌러서

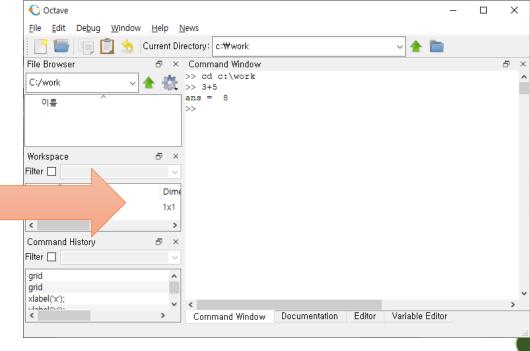




Octave 설치

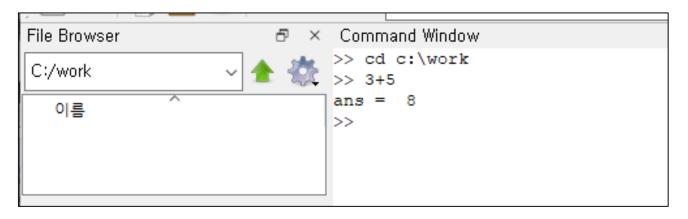
• 설치 후 수행하면 다음과 같은 화면이 나타난다.




Octave 화면

Octave 시작

- 실습시에 작업영역은 C:\work로 지정한다.
 - File Browser에서도 이에 맞추어서 사용한다.
 - Matlab 또는 Octave의 명령어에서 cd 명령어를 사용하면 디렉토리 위치를 변경할 수 있다.
 - ightharpoonup cd c:\work ightharpoonup c:\work 디렉토리(폴더)로 현재의 폴더를 변경한다.
- 명령창(Command Window)에서 명령어 입력



12

Octave 시작

- Octave 명령창의 사용 방법
 - [>>] 기호가 명령어를 입력할 수 있는 대기상태라는 것을 알린다.
 - -[>>] 기호가 나타나면 앞의 명령어를 입력한다.
 - clc: clear screen으로 화면을 지우는 명령어이다.
 - ▶ 수행 후에는 그림과 같이 화면이 지워지며 정리된다.
 - 3+5: 수식을 입력하면 수식을 계산한다.
 - ▶ 다른 변수에 입력하지 않는 계산 결과는 ans라는 변수에 자동으로 저장된다.
 - ▶ 즉, ans는 가장 최근의 계산결과를 의미한다.

사칙연산

 Matlab을 사용하면 계산식의 입력이 가능하며, 가장 간단한 계산식으로 사 칙 연산을 들 수 있다.

Operation	Symbol	Example
Addition, a + b	+	3 + 22
Subtraction, a – b	-	90 – 54
Multiplication, a • b	*	3.14 * 0.85
Division, a ÷ b	/ or \	56/8 = 8\56
Exponentiation, a ^b	۸	2^8

- 일반적인 프로그래밍 언어와 비슷하게 더하기와 빼기는 수학 기호인 +, 를 그냥 사용하고, 곱하기와 나누기는 *, / 로 사용한다.
- 특이하게 Matlab에서는 일반적인 나누기인 / 기호 외에 \ 기호를 사용하기도 하는데 / 기호는 right division 이라고 하고 \는 오른쪽의 값을 왼쪽으로 나누는 나눗셈을 수행하며 left division이라고 한다. 일반적인 숫자의 경우에는 순서만 주의하면 결과는 차이가 없으며, 행렬 연산에서 차이가 발생한다.

사칙연산

- 다음의 연산을 따라해 보도록 하자.
 - 먼저 +, -, *, / 는 C 언어에서 사용하던 연산자이므로 별 무리없이 이해가 될 것이다.
 - 왼쪽 나눗셈(left division)의 경우에 56 / 8과 8 \ 56 의 결과가 동일한 것을 확인하도록 한다.
 - 거듭제곱(exponentiation)인 ^ 연산은 C 언어에서는 없지만 Matlab에서는 지원하며 FORTRAN 언어의 경 우 **의 연산자로 지원한다.

- 잘 알다시피 괄호() 는 연산의 우선순위를 변경하는 용 도로 사용된다. 오른쪽 아래 두 가지 경우를 비교해 보 도록 하자.
- 수행결과는 화면을 캡처해서 과제물에 포함하여 제출한다.

```
>> 3 + 22
ans = 25
>> 90 - 54
ans = 36
>> 3.14 * 0.85
ans = 2.6690
>> 56 / 8
ans = 7
>> 8 \ 56
ans = 7
>> 2 ^ 8
ans = 256
>> ((1.043 + 2.01) * 3)^2
ans = 83.887
>> (1.043 + 2.01) * 3^2
ans = 27.477
```

사칙연산

• 계산식이 주어질 때 연산자들은 다음의 우선순위를 가지고 계산된다.

우선순위	연산자
1	괄호, 중첩되어 있는 경우에는 안쪽 괄호부터 수행된다.
2	거듭제곱 (^)
3	곱셈, 나눗셈
4	덧셈, 뺄셈

- 동일한 우선순위의 연산자들은 동등한 순위를 가진다. 즉 곱셈과 나눗셈 기호는 서로 동등한 순위이다. 따라서 먼저 나오는 연산자를 먼저 수행한다.
- 위와 같이 복잡한 계산식의 경우에도 식만 입력하면 바로 계산되므로 탁상용 계산기의 용도로 사용해도 무방하다.

• 변수(variable)란?

- 변수는 하나의 이름을 가지는 기억장소로써 수치를 기억할 수 있으며, 이를 변경할 수 있다. 기억된 변수는 그 자체로 기억된 숫자로서 수식, 함수 등에 바로 사용할 수 있다.
- Matlab에서는 숫자 하나(스칼라: scalar)를 기억할 수도 있고, 벡터 또는 배열을 저장할 수도 있다.

• 변수 이름 규칙

- 대소문자를 구별한다.
 - ➤ Cost, cost, CoST, COST 는 서로 다른 변수의 이름이다.
- 최대 31글자까지 허용한다. 단, 최근 Matlab과 Octave에서는 63글자까지 허용한다.
 - ▶ 참고로 namelengthname() 함수를 수행하면 최대 가능한 길이를 알 수 있다.
- 변수 이름은 문자, 숫자, 밑줄(_)이 사용된 하나의 단어로 구성되며, 문자로 시작해야 한다. 다른 기호는 사용할 수 없다.
 - ➤ Octave에서는 '_' 로 시작할 수도 있다. (Matlab에서는 안된다.)
- 키워드는 변수로 사용할 수 없으며, 함수 이름은 변수로 사용하지 않도록 <u>주의</u>한다.
 - ▶ 함수 이름을 변수로 사용해도 되나, 사용한 후에 해당하는 함수를 사용하지 못한다.

```
>> namelengthmax()
ans = 63
>>
```

- 변수의 사용법
 - 변수에 값을 지정하고자 할 때는 = 기호를 사용한다.
 - ▶ 변수 a를 만들고 5를 대입한다.
 - ▶ 변수 b를 만들고 4를 대입한다.

- 수식에 변수를 적으면 변수에 저장되어 있는 값이 사용된다.
 - ▶ 기억되어 있는 a, b 값이 계산에 사용되어 a + b 는 5 + 4로 계산된다.

• 미리정의된 특별한 변수들

- Matlab에서는 시작할 때 미리 정의되어 있는 특별한 변수들이 있다. 이 변수들은 값의 변경이 가능하나, 변경 후에는 원래의 의미가 사라지므로 가능하면 변경

하지 않도록 한다.

Special Variable	Description
ans	결과를 나타내는 기본 변수, 가장 최근에 계산된 결과 를 저장하고 있음
pi	원주율 (π)
eps	인접한 두 수 사이의 최소값으로 이 숫자 이하로 가까이 있는 숫자들은 구분하지 못함 : 2.2204×10^{-16}
inf	무한대 (1 / 0)
i, j	허수를 표현하는데 사용되는 상수, $i=j=\sqrt{-1}$
realmin	저장할 수 있는 최소의 + 숫자 : 2.2251 × 10 ⁻³⁰⁸
realmax	저장할 수 있는 최대의 + 숫자 : 1.7977 × 10 ³⁰⁸

```
>> pi
ans =
    3.1416
>> eps
ans =
   2.2204e-16
>> inf
ans =
   Inf
>> i
ans =
   0.0000 + 1.0000i
>> j
ans =
   0.0000 + 1.0000i
>> realmin
ans =
  2.2251e-308
>> realmax
ans =
  1.7977e+308
```

• 미리 정의된 키워드

- 키워드(keyword)란 Matlab에서 특정한 명령어로 사용되므로 변수의 이름으로 사용될 수 없다.
- 후에 프로그램을 작성하는 경우 제어문으로 사용되는 명령어가 대부분이다.
- Matlab과 Octave의 경우 미리 정의된 키워드가 조금 다르나, 제어문과 같은 것들은 공통이므로 아래의 키워드를 보면서 구분해보자.
- Matlab keywords
 - > break, case, catch, classdef, continue, do, else, elseif, end, for, function, global, if, otherwise, parfor, persistent, return, spmd, switch
- Octave keywords
 - > __FILE__, __LINE__, break, case, catch, classdef, continue, do, else, elseif, end, end_try_catch, end_unwind_protect, endclassdef, endenumeration, endevents, endfor, endfunction, endif, endmethods, endparfor, endproperties, endswitch, endwhile, enumeration, events, for, function, global, if, methods, otherwise, parfor, persistent, properties, return, switch, try, until, unwind_protect, unwind_protect_cleanup, while
 - ▶ 특히 end로 시작되는 키워드들은 Matlab에서 사용하는 것처럼 end로 대신할 수 있다.

자주 사용하는 명령어

- 앞에서 본 화면을 지우는 clc 이외에도 자주 사용하는 명령어들이 있으므로, 반복 연습하여 익히도록 한다.
 - help : 함수 이름이나 명령어의 사용법을 익히는 명령어이다.
 - who : 현재 사용중인 변수들의 목록을 출력하다.
 - whos : 변수들의 목록 및 크기, 데이터 형 등의 정보를 같이 출력한다.
 - clear : 사용중인 변수를 지운다. 변수명을 지정하지 않으면 모든 변수를 제거한다.

```
>> help cos
       Cosine of argument in radians.
    cos(X) is the cosine of the elements of X.
   See also acos, cosd.
    .... (생략)
\Rightarrow a = 5
A =
>> b = 6
>> who
사용자의 변수:
A b
>> whos
                                            Attributes
           Size
                           Bytes Class
  Name
                               8 double
           1x1
                               8 double
           1x1
>> clear a
>> a
'a'은(는) 정의되지 않은 함수 또는 변수입니다.
>> b
B =
>> clear
```

자주 사용하는 명령어

- 아래의 명령어 중에서 pwd, cd 등은 자주 사용하므로 반드시 익히도록 한다.
 - pwd (print working directory)
 - ▶ 현재 디렉토리(폴더)를 보여준다.
 - cd (change directory)
 - ▶ 현재 디렉토리를 변경한다.
 - dir: 현재 디렉토리의 파일들을 보여준다.
 - quit : Matlab를 종료한다.
 - -version: 현재 버전을 출력한다.

```
>> pwd
ans = c:\users\user
>> cd c:\work
>> pwd
ans = c:\work
>> dir
. ...
>> version
ans = 5.2.0
```

[Octave 수행 결과]

```
>> pwd
ans =
C:\WINDOWS\system32
>> cd c:\work
>> pwd
ans =
c:\work
>> dir

. ...
>> version
ans =
8.6.0.267246 (R2015b)
>>
```

과제물

- 아래의 과제물을 풀고 과제물 사이트를 통해서 제출하라.
 - 과제물 사이트 : http://energy.uu.ac.kr/report

- 과제물
 - 1. p. 16, p.19, p.20, p. 22, p. 23의 점선으로 둘러싸인 내용을 직접 수행하고 그 결과 화면을 캡처하여 제출하라.
 - 2. 다음의 식을 계산하고 그 결과 화면을 캡처하여 제출하라.

$$\frac{22 + 51}{30 - 2.2^3}$$

3. 변수 x = 1.7로 지정하고 다음의 식을 계산하도록 한 후 결과화면을 제출하라.

$$5x^3 - 2.3x^2 + 3x - 10$$