11. AC Circuit Power Analysis

11.1 Instantaneous power

- Resistance

$$
\begin{aligned}
p(t) & =v(t) \cdot i(t) \\
& =i^{2}(t) \cdot R \\
& =v^{2}(t) / R
\end{aligned}
$$

- Inductance

$$
\begin{aligned}
p(t) & =v(t) \cdot i(t) \\
& =L i(t) \frac{d i(t)}{d t}
\end{aligned}
$$

- Capacitance

$$
\begin{aligned}
p(t) & =v(t) \cdot i(t) \\
& =C v(t) \frac{d v(t)}{d t}
\end{aligned}
$$

Example)

$$
i(t)=\frac{V_{0}}{R}\left(1-e^{\frac{-R}{L} t}\right) u(t)
$$

total power delivered by the source

$$
\begin{aligned}
p(t) & =v(t) \cdot i(t) \\
& =\frac{V_{0}^{2}}{R}\left(1-e^{\frac{-R}{L} t}\right) u(t)
\end{aligned}
$$

power delivered to (dissipated by) the R

$$
\begin{aligned}
p_{R}(t) & =i^{2}(t) R \\
& =\frac{V_{0}^{2}}{R}\left(1-e^{\frac{-R}{L} t}\right)^{2} u(t)
\end{aligned}
$$

power absorbed by inductor L

$$
\begin{aligned}
p_{L}(t) & =v_{L}(t) \cdot i(t) \\
& =\frac{V_{0}^{2}}{R} e^{\frac{-R}{L} t}\left(1-e^{\frac{-R}{L} t}\right) u(t)
\end{aligned}
$$

where $v_{L}(t)=L \frac{d i(t)}{d t}=V_{0} e^{\frac{-R}{L} t} u(t)$

11.2 Average power.

over the interval $\left[t_{1}, t_{2}\right]$.

$$
P=\frac{1}{t_{2}-t_{1}} \int_{t_{1}}^{t_{2}} p(t) d t
$$

for a periodic fn .

$$
f(t)=f(t+T)
$$

average power over one period.

$$
P=\frac{1}{T} \int_{t_{1}}^{t_{1}+T} p(t) d t
$$

- Average power in the sinusoidal steady state,

$$
v(t)=V_{m} \cos (w t+\theta) \text { and } i(t)=I_{m} \cos (w t+\phi)
$$

instantaneous power.

$$
\begin{aligned}
p(t) & =V_{m} I_{m} \cos (w t+\theta) \cos (w t+\phi) \\
& =\frac{1}{2} V_{m} I_{m} \cos (2 w t+\theta+\phi)+\frac{1}{2} V_{m} I_{m} \cos (\theta-\phi) \\
& =[\text { sinusoids with twice the applied freg. }]+[\text { constant term }]
\end{aligned}
$$

Hence, average power.

$$
P=\frac{1}{2} V_{m} I_{m} \cos (\theta-\phi)
$$

Example 11.2) $v(t)=4 \cos (\pi t / 6)$,

$$
V=4(V) \text { and } Z=2 \angle 60^{\circ}
$$

Average power and instantaneous power?
sol)
Phasor current

$$
I=\frac{V}{Z}=2 \angle-60^{\circ} \quad \Rightarrow i(t)=2 \cos \left(\pi t / 6-60^{\circ}\right)
$$

Average power

$$
P=\frac{1}{2} \cdot 4 \cdot 2 \cos \left(0^{\circ}+60^{\circ}\right)=4 \cos \left(60^{\circ}\right)=2(W)
$$

instantaneous power.

$$
\begin{aligned}
p(t) & =8 \cos (\pi t / 6) \cos \left(\pi t / 6-60^{\circ}\right) \\
& =2+4 \cos \left(\pi t / 3-60^{\circ}\right)
\end{aligned}
$$

- Average power absorbed by Resistor

same phase (in phase)

$$
v(t)=V_{m} \cos (w t+\theta) \text { and } i(t)=I_{m} \cos (w t+\theta)
$$

Average power

$$
\begin{aligned}
P & =\frac{1}{2} V_{m} I_{m} \cos (\theta-\theta) \\
& =\frac{1}{2} V_{m} I_{m}=\frac{1}{2} \frac{V_{m}^{2}}{R}=\frac{1}{2} I_{m}^{2} R
\end{aligned}
$$

- Average power absorbed by Reactive elements (L and C)

phase difference : $\pm 90^{\circ}$
Average power

$$
P=\frac{1}{2} V_{m} I_{m} \cos \left(\pm 90^{\circ}\right)=0(W)
$$

Example 11.3) $Z_{L}=8-j 11(\Omega)$ by a current $I=5 \angle 20^{\circ}$ (A)
sol) $Z_{L}=8-j 11(\Omega)=R+j X$ (저항 + 리액턴스)

$$
\Rightarrow P=\frac{1}{2} I_{m}^{2} R=100(W)
$$

Example 11.4) Average power of each elements?

sol)
$P_{L}=P_{C}=0(W)$
$I_{1}=5-j 10=11.18 \angle-63.43^{\circ} \Rightarrow I_{1}-I_{2}=-j 5=5 \angle-90^{\circ}$
$I_{2}=5-j 5=7.07 \angle-45^{\circ}$
$P_{2 \Omega}=\frac{1}{2} I_{m}^{2} R=25(W)$
$P_{l_{\text {sarree }}}=\frac{1}{2} V_{m} I_{m} \cos (\theta-\phi)=\frac{1}{2} \times 20 \times(-11.18) \times \cos \left(63.43^{\circ}\right)=-50(W)$
$P_{r_{\text {soaree }}}=\frac{1}{2} V_{m} I_{m} \cos (\theta-\phi)=\frac{1}{2} \times 20 \times 11.18 \times \cos \left(45^{\circ}\right)=25(W)$

- Maximum power transfer.

The average power delivered to the load is maximum when $Z_{L}=Z_{t h}$. (impedance matching)

11.3 Effective values of current and voltage

※ ac 110 v or 220 v having a freq. of 60 Hz
\Rightarrow What is meant by " 110 " volts?
"Effective value" or "rms(root mean square) value"
(dc $V_{e f f}$ 와 동일한 효과의 전압을 저항에 공급)

(a)

$$
\begin{aligned}
& V_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} v^{2}(t) d t}=V_{e f f} \\
& I_{r m s}=\sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) d t}=I_{e f f}
\end{aligned}
$$

(b)

- rms value of Sinusoids

$$
\begin{aligned}
I_{r m s} & =\sqrt{\frac{1}{T} \int_{0}^{T} i^{2}(t) d t} \quad \leftarrow i(t)=I_{m} \cos (w t+\phi) \\
& =I_{m} \sqrt{\frac{1}{T} \int_{0}^{T} \cos ^{2}(w t+\phi) d t} \leftarrow \cos ^{2}(A)=[1+\cos (2 A)] / 2 \\
& =I_{m} \sqrt{\frac{1}{2 T} \int_{0}^{T}[1+\cos (2 w t+2 \phi)] d t} \\
& =I_{m} \sqrt{\frac{1}{2 T}[T+0]} \\
& =\frac{I_{m}}{\sqrt{2}}
\end{aligned}
$$

11.4 Apparent Power and Power Factor

Impedance Z_{L} applied by $v(t)=V_{m} \cos (w t+\theta)$
\Rightarrow the current $i(t)=I_{m} \cos (w t+\phi)$

Average power

$$
\begin{aligned}
P & =\frac{1}{2} V_{m} I_{m} \cos (\theta-\phi) \\
& =V_{\text {eff }} I_{\text {eff }} \cos (\theta-\phi)
\end{aligned}
$$

where apparent power is

$$
P_{\text {apparent }}=V_{\text {eff }} I_{\text {eff }}
$$

Power factor

$$
\text { PF }=\frac{\text { Average Power }}{\text { Apparent Power }}=\cos (\theta-\phi)
$$

Example 11.8) Average power, Apparent power, and Power factor?
sol)
total impedance

$$
Z=3+j 4=5 \angle 53.13^{\circ}
$$

current

$$
I=\frac{V}{Z}=\frac{60 \angle 0^{\circ}}{5 \angle 53.13}=12 \angle-53.13^{\circ}
$$

Average power

$$
\begin{aligned}
P & =\frac{1}{2} V_{m} I_{m} \cos (\theta-\phi) \\
& =V_{\text {eff }} I_{\text {eff }} \cos (\theta-\phi) \\
& =I_{\text {eff }}^{2} R=12^{2} \times 3=432(W)
\end{aligned}
$$

Apparent power

$$
P=V_{e f f} I_{e f f}=60 \times 12=720(W)
$$

Power factor

$$
\begin{aligned}
P F & =\cos (\theta-\phi)=\cos \left(53.13^{\circ}\right)=0.6 \\
& =\frac{432}{720}=0.6
\end{aligned}
$$

