2021년도 2학기 **휴먼스마트기기설계** ^{강의자료 #2}

2. 사물인터넷용 제어 보드

단일보드 컴퓨터

• 단일보드 컴퓨터 (SBC : Single Board Computer)

- 하나의 회로기판에 마이크로프로세서, 메모리, 입출력 장치, 기타 기능들을 넣어 놓은 컴퓨터
- -개발, 교육, 임베디드 시스템용으로 제작

- 소형의 저전력 컴퓨터로 사용

- 외부 장치 (센서)와는 직접적으로 연결 (데스크탑: 확장 슬롯 등을 사용)

단일보드 컴퓨터

- 컴퓨터 시스템의 5대 구성 요소
 - 중앙처리장치(CPU: Central Processing Unit) : 인간의 두뇌, 연산/제어 기능
 - 입력장치 : 키보드/마우스 등과 같이 외부정보를 읽어들이는 장치.
 - 출력장치 : 모니터/프린터 등과 같이 정보를 보여주는 장치.
 - 주기억장치 : 컴퓨터가 수행중일때 사용하는 기억장치로 주로 RAM을 의미.
 - 보조기억장치 : HDD 등과 같이 컴퓨터의 전원이 없는 경우에도 저장 가능.

단일보드 컴퓨터의 예

단일보드 마이크로컨트롤러

- 단일보드 마이크로컨트롤러
- 단일보드 컴퓨터에 비해서 저사양, 소형화, 저가격

-대표적인 제품:아두이노

- 단일보드 컴퓨터 : CPU 사용

▶ 연산 및 제어회로만 가지고 있음

▶ 예] Raspberry pi: ARM 기반의 CPU 사용

- 단일보드 마이크로컨트롤러 : MPU

▶ 외부 기억장치, 보조기억장치 등을 추가하여 사용

▶ 예] 아두이노 : Atmel 사의 ATmega328 사용

> 연산/제어회로 + 기억장치(RAM) + 보조기억장치(Flash RAM) + 입/출력 포트

단일보드 마이크로컨트롤러 : 아두이노

• 아두이노란?

- 아두이노(arduino)는 이탈리아의 IDII(Interaction Design Institutelvera)에 서 2005년에 만든 초보자를 위한 하드웨어(hardware) 제작용 마이크로컨트 롤러(microcontroller) 보드
- 비전공자 및 초보자도 쉽게 하드웨어에 접근
- 하드웨어 및 소프트웨어를 오픈소스로 공개 → 확산
- 간단하게 센서, 스위치 등으로 제어 가능
- C/C++ 기반 개발환경 제공
- 다양한 센서모듈
- 최근 모델

- Nano 33 IoT, Nano BLE 등 사물인터넷용으로 개발

단일보드 마이크로컨트롤러 : 아두이노

	Uno	Leonardo	Due	Mega2560
외관				
용도	대표적인 보드	키보드/마우스 장치로 구동	32비트 MPU	Uno의 확장 및 대용량
MPU	ATmega328	ATmega32u4	AT91SAM3X8E	ATMega2560
동작전압	5V	5V	3.3V	5V
디지털 I/O핀	14	20	54	54
PWM핀	6	12	12	16
아날로그 입력	6	12	12	16
아날로그 출력	-	-	2	-
SRAM	2KB	2.5KB	96KB	8KB
Flash Memory	32KB	32KB	512KB	256KB
EEPROM	1KB	1KB	-	4KB
공급전원	USB/외부전원	USB/외부전원	USB/외부전원	USB/외부전원

단일보드 마이크로컨트롤러 : 아두이노

	Nano	Micro	Pro Mini	LilyPad	
외관					
용도	Uno의 소형 버전	Leonardo의 소형 버전	가장 작은 크기 실제 제품 제작용	옷에 부착가능/ 웨어러블 버전	
MPU	ATmega328	ATmega32u4	ATmega168	ATMega168V	
동작전압	5V	5V	3.3V or 5V	2.7V~5.5V	
디지털 I/O핀	14	10	14	9	
PWM핀	6	7	6	16	
아날로그 입력	6	12	8	16	
아날로그 출력	_	-	-	-	
SRAM	2KB	2.5KB	2KB	1KB	
Flash Memory	32KB	32KB	32KB	32KB	
EEPROM	1KB	1KB	1KB	512B	
공급전원	USB/외부전원	USB/외부전원	보드 직접연결	USB/외부전원	

단일보드 마이크로컨트롤러 : ESP8266

• ESP8266 series

- ESP8266 chip : Espressif사의 TCP/IP의 풀 스택의 무선인터넷 기능을 처리 하는 마이크로컨트롤러
- Ai-Thinker사에서 ESP8266 칩을 사용하는 ESP-01 모듈 출시 ⇒ 아두이노 등과 연결 (시리얼 통신) 하여 무선인터넷 기능을 수행함
- 저렴한 가격으로 빠른 속도로 성장함 (개당 1~2달러)

참고:<u>https://en.wikipedia.org/wiki/ESP8266</u>

단일보드 마이크로컨트롤러 : ESP8266

- ESP8266 series
 - <u>ESP-01</u> 모듈 → ESP-01 외에 ESP-01S, ESP-01M, ESP-02, ESP-03, ESP-04, ESP-05, ESP-06, <u>ESP-07</u>, ESP-07S, ESP-08, ESP-09, ESP-10, ESP-11, ESP-12, <u>ESP-12E</u>, <u>ESP-12F</u>, ESP-13, ESP-14 모듈로 개선

Div. of Energy and Ele

단일보드 마이크로컨트롤러 : ESP8266

• 실습 및 개발용 보드 : ESP-12E 모듈 + 전원/USB + 알파

3. 개발 환경 구축

NodeMCU

- ESP-12E/F 모듈을 사용한 단일보드 마이크로컨트롤러 보드
- ESP8266의 사양
 - 프로세서 : Tensilica 32비트 RISC CPU Xtensa LX106
 - -구동전압: 3.3V
 - 구동 주파수 : 80~160MHz
 - 소모전류 : 10uA ~ 170mA
 - -메모리 (SRAM): 32KB + 80KB
 - 플래시 메모리 : 최대 16MB까지 장착 가능
 - 외부 입/출력 핀 : 17 (다른 기능과 중복되어 사용함)
 - 아날로그 입력 : 1 (10비트 해상도)
 - -무선네트워크: 802.11 b/g/n
 - 최대 TCP/IP 접속 : 5개

NodeMCU

- 구동 주파수 : 80MHz
- SRAM:64KB
- 플래시 메모리 : 4MB
- UART: 1 (시리얼 통신용 포트)
- SPI: 1 (디지털 통신용)
- I2C:1(디지털 통신용)

NodeMCU 종류

• 3가지 버전이 존재

NodeMCU Devkit V0.9 aka NodeMCU V1

Lolin NodeMCU aka "NodeMCU V3"

NodeMCU비교

NodeMCU pin map

GPIO (General Purpose Input/Output)

Div. of Energy and Electrical Engineering, Uiduk University

 $\bigcirc \bigcirc \bigcirc$

ACROBOTIC

Reworked original ACROBOTIC poster by r00tGEI

NOTES:

개발환경

• ESP8266 개발 방법

- Espressif사에서 제공한 SDK를 사용
 - ▶ C/C++ 언어를 이용하여 개발
 - ▶ 가장 기본이 되는 개발 방법
- Sming framework
 - ▶ SDK를 쓰기 쉽게 만들어놓은 개발 환경, 아두이노와 비슷한 스타일로 작성
- Arduino IDE (Integrated Development Environment) 활용
 - ≻ C/C++기반의 간단한 구조
 - ▶ 아두이노와 동일한 방법으로 개발, 아두이노 개발 경험이 있으면 쉽게 적응 가능
- NodeMCU : Lua

▶ Lua 스크립트를 사용하는 방법

- -기타
 - ▶ Javascript, Python, BASIC 등의 언어로도 개발이 가능

- 프로그래밍
 - 프로그램 : 업무수행을 위한 계획 (컴퓨터가 작동하는 순서를 미리 만들어놓은것)
 - 프로그래밍 : 프로그램을 작성하는 것
- 컴퓨터 프로그램
 - 컴퓨터 : 스위치의 제어로 조작하는 전기기기
 - 복잡한 기능 : 많은 스위치 필요 → 기계어 (machine language) : 이해하기 어려움
 - 인간이 이해하기 쉬운 언어 : 고급 언어 (high level language)

실습에 사용되는 키트

• 아두이노 키트 사용 + NodeMCU + 추가 부품

아두이노 UNO

NodeMCU pin map

22

아두이노 IDE 구축

• 통합개발환경의 다운로드 및 설치

ESP8266 설정

• 아두이노 IDE + ESP8266 추가 설정 #1

환경설정	×				
설정 네트워크					
스케치북 위치:					
C:₩Users₩sonar₩Documents*	#Arduino 찾아보기				
에디터 언어:	System Default v (아두이노를 재시작해야 함)				
에디터 글꼴 크기:	12				
Interface scale:	☑ 자동 100 ♠ % (아두미노를 재시작해야 함)				
테마:	디폴트 테마 🗸 (아두이노를 재시작해야 함)				
다음 동작중 자세한 출력 보이기:	□ 컴파일 □ 업로드				
컴파일러 경고:	None 🗸				
🗌 줄 번호 표시	🗌 코드 폴딩 사용하기				
🗹 업로드 후 코드 확인하기	🗌 외부 에디터 사용				
🗹 시작시 업데이트 확인	☑ 검증 또는 업로드 할 때 저장하기				
Use accessibility features					
추가적인 보드 매니저 URLs					
우가직은 환경 발장은 파일에서 두	김 편집철 수 있습니다.				
C:\Users\Sonar\AppData\Local\Arduino15\preferences.txt					
(아두이노가 실행되지 않는 경우에	I만 수정 가능)				

https://arduino.esp8266.com/stable/package_esp8266com_index.json

ESP8266 설정

아두이노 IDE + ESP8266 추가 설정 #2 -메뉴 [툴 → 보드 → 보드 매니저…] 수행 후 esp8266 설치

፩ 보드 매니저	×
타입 All 🗸 esp8266	
중 보드 매니저 ** ENB All · · · · · · · · · · · · · · · · · ·	
2,6,3 ✓ 설치	

IDE 실행 결과

፩ ex3-1│아두이노 1.8.7	- 🗆 X	፩ ex3-1│아두이노 1.8.7	_		×
파일 편집 스케치 둘 도움말		파일 편집 스케치 툴 도움말			
	₽ [.]				ø
ex3-1 §		ex3-1 §			
		int led = 13; // 처음 시작시 한번만 수행하는 함수, 설정을 담당한다 void setup() { pinMode(led, OUTPUT); // 13번 핀을 출력으로 설정한다 } // 반복해서 호출되는 함수 void loop() { digitalWrite(led, HIGH); // 13번 핀으로 5V 디지털 신호를 출력한다 delay(1000); // 1000 ms = 1초를 기다린다.			~
지장 완료.	~	digital₩rite(led, L0₩); // 13번 핀으로 0V 디지털 신호를 출력한다 delay(1000); // 1초를 기다린다. } 저장 완료.			¥
	Addite / Annulas Une an COLM	10		11	20114
	Algumo/Genuino Uno on COM4	13	Aluumo/Genuino	one on C	

프로그램의 구조

- C/C++을 이용하지만, 일반적인 프로그램과 다른 구조
 - setup() 함수와 loop()함수로 이루어짐
 - setup() : 처음 한번만 수행, loop() : 무한히 반복해서 수행

ex1.m
<pre>void setup() { // put your setup code here, to run once:</pre>
}
<pre>void loop() { // put your main code here, to run repeatedly:</pre>
}

첫번째 스케치

• 보드 연결 : USB를 이용하여 컴퓨터에 연결

```
Example 3-1
int led = LED_BUILTIN;
// 처음 시작시 한번만 수행하는 함수, 설정을 담당한다
void setup() {
   pinMode(led, OUTPUT); // 13번 핀을 출력으로 설정한다
}
// 반복해서 호출되는 함수
void loop() {
   digitalWrite(led, HIGH); // 13번 핀으로 5V 디지털 신호를 출력한다
              // 1000 ms = 1초를 기다린다.
   delay(1000);
   digitalWrite(led, LOW); // 13번 핀으로 0V 디지털 신호를 출력한다
              // 1초를 기다린다.
   delay(1000);
```

첫번째 스케치 (아두이노)

- pinMode() 함수
 - -디지털입/출력 핀의 사용 방식 설정 (입력/출력) pinMode(13, OUTPUT); pinMode(12, INPUT);
 - 보통 초기에 한번만 수행하면 됨 ⇒ setup() 함수
- digitalWrite() 함수
 - 디지털 출력핀으로 출력값을 지정 (HIGH, LOW 또는 1, 0)
 - -HIGH:5V,LOW:OV digitalWrite(13, HIGH);
- delay() 함수
 - 시간지연 함수, 단위 mili-second. delay(1000);

첫번째 스케치 (NodeMCU)

- pinMode() 함수
 - 디지털 입/출력 핀의 사용 방식 설정 (입력/출력)
 pinMode(<u>D13</u>, OUTPUT); pinMode(<u>D12</u>, INPUT);
 보통 초기에 한번만 수행하면 됨 ⇒ setup() 함수
- digitalWrite() 함수
 - 디지털 출력핀으로 출력값을 지정 (HIGH, LOW 또는 1, 0)
 - HIGH : 5V, LOW : 0V

digitalWrite(D13, HIGH);

- delay() 함수
 - 시간지연 함수, 단위 mili-second. delay(1000);

ESP8266의 입/출력 포트 번호

 %AppData%\Local\Arduino15\packages\esp8266\hardware\esp8266\2.6.3\variants\nodemc u\pins_arduino.h

Arduino vs. ESP8266

• 구동 전압이 다르다

- -아두이노:5V ↔ ESP8266:3.3V
 - ▶ 많은 센서 모듈들이 아두이노용으로 개발되었으며, 5V에 맞추어져 있음
 - ≻상당 수의 모듈들은 3.3V~5V에서 구동되나 일부 다른 모듈들이 있으므로 주의
- 입/출력 핀을 지정하는 방법이 다름
 - ▶ 하드웨어가 다르기 때문에 핀 번호가 다름
 - ▶ 아두이노의 2번 포트가 ESP8266의 2번 포트가 아님
 - ▶ 호환성을 유지하기 위해서 : 숫자 nn 대신 Dnn으로 사용
 - DigitalWrite(3, HIGH); ⇒ DigitalWrite(D3, HIGH);

4. 디지털 입출력의 기초 (1학기 마이크로프로세서 : Arduino)

∞ ex3-1│아두이노 1.8.7	_	
파일 편집 스케치 둘 도움말		
		ø
ex3-1		
int led = 13;		
// 처음 시작시 한번만 수행하는 함수, 설정을 담당한다 void setup() { pinMode(led, OUTPUT); // 13번 핀을 출력으로 설정한다 }	-F	
// 반복해서 호출되는 함수 void loop() { digitalWrite(led, HIGH); // 13번 핀으로 5V 디지털 신호 delay(1000); // 1000 ms = 1초를 기다린다. digitalWrite(led, LOW); // 13번 핀으로 0V 디지털 신호 delay(1000); // 13번 핀으로 0V 디지털 신호 delay(1000); // 1초를 기다린다. }	를 출력한다 를 출력한다	

4.1 LED를 이용한 디지털 신호 출력

- LED (Light Emitting Diode)
 - 1962 닉 홀로니악이 발명
 - 전원이 방향에 따라 빛을 방출
 - Anode (양극), Cathode (음극)
 - 초기 : 빨간색, 초록색
 - 최근 : 노란색, 파란색, 흰색, 3색
 - 내부저항이 적으며 20~30mA의 전류 사용
 - → 5V연결시 200옴 정도의 저항을 직렬로 연결

• 브레드보드

- 전원선으로 사용되는 가로선 (빨간색 : +, 파란색 : -)

- 구멍 사이의 간격은 0.1인치 (2.54mm) : DIP타입의 IC 칩의 간격과 동일

• 저항

- 전류의 흐름을 방해하는 소자
- 저항값: 색 띠로 계산

	구분	첫번째 띠	두번째 띠	세번째 띠	내번째 띠	다섯번째 띠
색상		숫자 1	숫자 2	숫자 3	승수	오차
	검은색	0	0	0	10 ⁰ = 1	
	갈색	1	1	1	10 ¹ = 10	±1%
	빨간색	2	2	2	$10^2 = 100$	±2%
	주황색	3	3	3	$10^3 = 1000$	
	노란색	4	4	4	$10^4 = 10000$	
	초록색	5	5	5	$10^5 = 100000$	±0.5%
	파란색	6	6	6	$10^6 = 1000000$	±0.25%
	보라색	7	7	7	107 = 10000000	±0.1%
	회색	8	8	8	$10^8 = 100000000$	±0.05%
	흰색	9	9	9		
	황금색					±5%
	은색					±10%

Arduino

• 회로 구성

37

```
• 스케치
```

```
예제 4-1. 첫번째 스케치
```

```
int led = 13;
// 처음 시작시 한번만 수행하는 함수, 설정을 담당한다
void setup() {
   pinMode(led, OUTPUT); // 13번 핀을 출력으로 설정한다
}
// 반복해서 호출되는 함수
void loop() {
   digitalWrite(led, HIGH); // 13번 핀으로 5V 디지털 신호를 출력한다
   delay(1000);
              // 1000 ms = 1초를 기다린다.
   digitalWrite(led, LOW); // 13번 핀으로 0V 디지털 신호를 출력한다
              // 1초를 기다린다.
   delay(1000);
}
```

4.1 LED를 이용한 디지털 신호 출력

• 회로 구성


```
예제 4-1. 첫번째 스케치
```

```
// LED 깜박이기
// 처음에 한번 수행하는 함수
void setup() {
   pinMode(D2, OUTPUT); // D2 핀을 출력용으로 설정
}
// setup() 함수 수행 후에 무한히 반복하는 함수
void loop() {
   digitalWrite(D2, HIGH); // D2핀으로 3.3V 출력, LED On
              // 1초 기다리기
   delay(1000);
   digitalWrite(D2, LOW); // D2핀으로 0V 출력, LED Off
             // 2초 기다리기
   delay(2000);
```

4.2 두개의 LED를 제어하기

• 회로 구성

예제 4-2. 두 개의 LED 순차 점등

```
int ledA = 13;
int ledB = 12;
// 처음 시작시 한번만 수행하는 함수, 설정을 담당한다
void setup() {
   pinMode(ledA, OUTPUT); // 13번 핀을 출력으로 설정한다
   pinMode(ledB, OUTPUT); // 12번 핀을 출력으로 설정한다
}
// 반복해서 호출되는 함수
void loop() {
  // LED 1만 켜기
   digitalWrite(ledA, HIGH); // LED 1 켜기
   digitalWrite(ledB, LOW); // LED 2 끄기
              // 1초를 기다린다.
   delay(1000);
  // LED 2만 켜기
   digitalWrite(ledA, LOW); // LED 1 □기
   digitalWrite(ledB, HIGH); // LED 2 켜기
   delay(1000);
              // 1초를 기다린다.
}
```


 아두이노의 예제와 동일하게 LED를 하나 더 추가해서 2개의 LED를 연 결하는 회로를 구성하고, 2개의 LED가 교대로 켜지도록 스케치를 작성 하라.

4.3 스위치를 이용한 디지털 입력

Arduino

• 회로도

- 저항의 역할 : 풀다운(pull-down) 저항 - 스위치가 Off인 경우에 GND로 연결 - 스위치 On인 경우에는 5V 인가

풀업/풀다운

Arduino

- 풀업 (pull-up) / 풀다운 (pull-down)
 - 없는 경우 : floating 상태 (High impedance) ⇒ 전압이 결정되지 않음
 - 풀업 저항 : 스위치 오픈시에 5V로 입력 전압 유지
 - 풀다운 저항 : 스위치 오픈시에 OV(GND)로 입력 전압 유지

예제 4-3. 디지털 입력 프로그램

```
// 디지털 입/출력 핀 2번을 스위치의 입력으로 설정한다.
int pushButton = 2;
void setup() {
 // 시리얼 통신을 위하여 초기화하는 과정, 9600보레이트(baud-rate)로 설정한다.
 Serial.begin(9600);
 // 버튼 스위치가 연결된 2번 핀을 입력 모드로 설정한다.
 pinMode(pushButton, INPUT);
void loop() {
 // 현재 버튼이 연결되어 있는 핀의 값을 읽어들인다.
 int buttonState = digitalRead(pushButton);
 // 입력받은 값을 시리얼 통신을 통해서 PC로 전송한다.
 Serial.println(buttonState);
   // 입력 상태를 안정화하기 위하여 1미리초 동안 대기한다
 delay(1);
```

• 채터링(chattering)

- 스위치의 물리적인 접촉이 일어나는 경우 잡음이 발생

➤ Capacitor를 사용하여 상태가 천천히 변하도록 한다.
 ➤ S/W 로 해결 : delay()함수 사용

RESET

10uF

OVCC

SW9

UART 통신

• 시리얼 통신

- 아두이노와 PC와의 통신
- UART (Universal Asynchronous Receiver and Transmittor)
- RS-232, RS-422, RS-485 등의 표준방식이 존재
- 아두이노에는 디지털 포트 0번과 1번이 준비되어 있음
- 추가 시리얼 통신은 소프트웨어로 해결

• Serial 객체

- PC와의 시리얼통신을 위해 사용함
- -setup()함수에서 초기화
 - > Serial.begin(9600);
 - ▶ 9600 보레이트(baud-rate)로 설정
 - ✓ Baud-rate : 300, 1200, 2400, 4800, <u>9600</u>, 19200, 38400, …
- -Serial.println(값);
 - ▶ 주어진 값을 PC로 전송 print + line (줄넘김 포함)
 - ✓ Serial.println("Hello");
 - ✓ Serial.print(3.14);
 - ✓ Serial.print('A');
 - ▶ 읽기 : Serial.available() 함수와 Serial.read() 함수를 사용

시리얼 입력

- Serial.available()
 - 현재 시리얼 포트에 새로운 값이 전송되었는지 판단하는 함수
 - 이 함수를 이용하여 새로운 값이 있는 경우만 읽어 들임
- Serial.read()
 - 시리얼 포트에 저장되어 있는 값을 읽어 들임

Arduino

예제: 시리얼 입력을 통한 LED 제어

```
void setup() {
  // LED_BUILTIN : 내장된 LED 포트 번호 == 13
 Serial.begin(9600);
 pinMode(LED_BUILTIN, OUTPUT);
}
void loop() {
  // 시리얼 통신 검사 후 데이터 읽기
  if(Serial.available()) {
   char ch = Serial.read();
   if(ch == '1')
     digitalWrite(LED_BUILTIN, HIGH);
   else if(ch == '2')
     digitalWrite(LED_BUILTIN, LOW);
 delay(10);
```

• 시리얼 모니터를 이용하여 전송

💿 testserial 아두이노 1.8.10	– 🗆 🗙	💿 СОМЗ		- 🗆 ×
파일 편집 스케치 툴 도움말		1		전송
	Part and a second s			
testserial				
<pre>void setup() { // LED_BUILTIN : 내장된 LED 포트 번호 == 13 Serial.begin(9600); pinMode(LED_BUILTIN, OUTPUT); } void loop() { // 시리얼 통신 검사 후 데이터 읽기 if(Serial.available()) { char ch = Serial.read(); if(ch == '1') digitalWrite(LED_BUILTIN, HIGH); else if(ch == '2') digitalWrite(LED_BUILTIN, LOW); } delay(10); } X정 욘료. 스케치는 프로그램 저장 공간 1958 바이트(6%)를 사용. 최대 전역 변수는 동적 메모리 196바이트(9%)를 사용, 1852바이</pre>	· * 32256 바이트. 트의 지역변수가 남음			
۲۵ (۲۵) ۲۵ (۲۵)	>	└──	새 줄 🗸 9600 보드레이트	◇ 출력 지우기

Internal pull-up register

- 아두이노 내부에 존재하는 풀업 저항
 - -pinMode(INPUT) 대신 pinMode(INPUT_PULLUP) 사용
 - 외부에 별도의 풀업 저항이 필요 없음 ⇒ 회로가 단순해짐
 - 풀다운 → 풀업 : 스위치 On/Off시에 digitalRead()의 결과가 바뀜 > On → LOW, Off → HIGH

Arduino

예제 4-3. 디지털 입력 프로그램 (pull-up)

```
// 디지털 입/출력 핀 2번을 스위치의 입력으로 설정한다.
int pushButton = 2;
```

```
void setup() {
```

```
// 시리얼 통신을 위하여 초기화하는 과정, 9600보레이트(baud-rate)로 설정한다.
```

```
Serial.begin(9600);
```

```
// 버튼 스위치가 연결된 2번 핀을 입력 모드로 설정한다.
```

```
pinMode(pushButton, INPUT_PULLUP);
```

```
void loop() {
   // 현재 버튼이 연결되어 있는 핀의 값을 읽어들인다.
   int buttonState = digitalRead(pushButton);
   // 입력받은 값을 시리얼 통신을 통해서 PC로 전송한다.
   Serial.println(buttonState);
   // 입력 상태를 안정화하기 위하여 1미리초 동안 대기한다
   delay(1);
```

4.2 스위치를 이용한 디지털 입력

• 회로 구성


```
예제 4-2. 디지털 입력 프로그램
```

```
// 스위치를 이용한 디지털 입력
        // 처음에 한번 수행하는 함수
        void setup() {
          // 시리얼 통신 초기화
          Serial.begin(9600);
          // 스위치가 연결되어 있는 D4핀을 입력용으로 설정
          pinMode(D4, INPUT);
        }
        // setup() 함수 수행 후에 무한히 반복하는 함수
        void loop() {
          // 현재 버튼의 값을 읽어들인다.
          int button = digitalRead(D4);
          // 입력받은 값을 시리얼 통신을 통해서 PC로 전송한다.
          Serial.println(button);
          // 10ms 동안 기다린다.
          delay(500);
Div. of Energy and
```


 아두이노에서 본 것과 같이 내부 풀업저항을 이용하도록 회로를 구성 하고 스케치를 작성하시오.